Estimate of the energy spread from the longitudinal resistive wall wakefield in LUX

J. N. Corlett

The longitudinal wakefield from the wall resistance of a circular pipe of radius b, length L, electrical conductivity \Box_c , at distance z behind the exciting charge, is given by [Chao]:

$$W' = \frac{cL}{2 \square b z^{3/2}} \sqrt{\frac{Z_0}{\square_c}}$$

The rms relative energy spread for a Gaussian bunch distribution of length \square_z is given by [LCLS], [Napo]:

$$\square_{\mathbb{D}RW} = 0.22 \frac{ecNL}{\square^2 b \frac{E}{e} \square_z^{3/2}} \sqrt{\frac{Z_0}{\square_c}}$$

provided that the bunch length is significantly longer than the characteristic length s₀

$$S_0 = \begin{bmatrix} 2b^2 & 1 \end{bmatrix}^{1/3}$$

For LUX parameters with chamber radius ~ 3.5 mm, and conductivity $\Box_c = 3.5 \times 10^7$ (Al), this condition is satisfied; $s_0 \approx 10^{-5}$, much less than the bunch length of $\sim 10^{-4}$ m. Table 1 shows the rms energy spread for two cases of rms bunch lengths 0.4 mm (FWHM 3 ps) and 0.25 mm (FWHM 2 ps), for each pass, number of electrons $N = 6.24 \times 10^9$ (1nC). The total energy spread from the longitudinal resistive wall wakefield is then 1.6×10^{-4} for a 3 ps bunch duration, and 3.2×10^{-4} for a 2 ps bunch duration. Table 2 shows estimates for the insertion devices.

Table 1. Energy spread for each arc

Beam energy	☐ (dipole length) (aperture 7 mm)	☐ (arc length) (aperture 30 mm)	Energy spread _{□rw}	
(GeV)	(m)	(m)	□ _z = 0.4 mm	$\Box_z = 0.25 \text{ mm}$
0.1	2.5	12	4.15E-05	8.40E-05
0.85	14.4	122	3.95E-05	7.99E-05
1.6	28.8	126	2.85E-05	5.77E-05
2.35	43.2	143	2.55E-05	5.17E-05
3.1	48	152	2.11E-05	4.27E-05

Beam energy	☐ (insertion device) (aperture 4 mm)	Energy s	pread _{□RW}		
(GeV)	(m)	$\square_z = 0.4 \text{ mm}$	□ _z = 0.25 mm		
For the hard X-ray insertion devices					
3.1	16.1	7.12E-06	1.44E-05		
For the FEL chains					
2.35	50	2.92E-05	5.90E-05		
3.1	50	2.21E-05	4.47E-05		

Table 2. Energy spread for insertion devices

Figure 1 shows the longitudinal bunch profile (blue) and resistive wall wakefield (red) for a rectangular bunch of 2 ps full width, in a 1 m vacuum chamber of radius 3.5 mm. The maximum longitudinal kick is 19 V/pC, and the rms value within the bunch is 15.8 V/pC, resulting in an rms energy deviation of 5×10^{-6} (per meter) for a 1 nC bunch at 3.1 GeV, slightly greater than the estimates above.

Figure 1. Longitudinal resistive wall wakefield (red) for a rectangular bunch of 2 ps duration (blue).

Conclusion

The energy spread arising from the resistive wall wakefield appears to be a small effect in LUX.

References

[Chao] A. Chao, M. Tigner eds, Handbook of Accelerator Physics and Engineering, World Scientific, 1999, ISBN 9810235003, p. 204.

[Napo] O. Napoly and O. Henry, "The resistive-pipe wake potentials for short bunches", Particle Accelerators, Vol. 35, pp. 235-247, 1991.

[LCLS] LCLS Design Study Report, SLAC-R-521, 1998, p. 7-55.